20000

CONTRACT NONR-0016-(11)

Project NR 017-630

Supervisor: Professor W. Kohn

University of California, San Diego

La Jolla, California

1007/ 12 OF 3 1.60 1110.1011/E \$. 0.50

The United States Government is permitted the right to reproduce in whole or in part, for any purpose, the material herein contained.

ARCHIVE GOPY

5/1:/65

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Exchange and Correlation Effects in an Inhomogeneous Electron Gas*

W. Kohn and L. J. Sham
University of California, San Diego
La Jolla, California

ABSTRACT

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. They lead to self-consistent equations analagous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as corrections to the electrostatic potential.

^{*} Supported in part by the Office of Naval Research.

Exchange and Correlation Effects in an Inhomogeneous Electron Gas*

W. Kohn and L. J. Sham

University of California, San Diego

La Jolla, California

It has been shown that the ground state energy of an interacting inhomogeneous electron gas in a static potential $v(\underline{r})$ can be written in the form

$$E = \int \mathbf{v}(\underline{\mathbf{r}}) \ \mathbf{n}(\underline{\mathbf{r}}) \ d\underline{\mathbf{r}} + \frac{1}{2} \iint \frac{\mathbf{n}(\underline{\mathbf{r}}) \ \mathbf{n}(\underline{\mathbf{r}}')}{|\underline{\mathbf{r}} - \underline{\mathbf{r}}'|} d\underline{\mathbf{r}} \ d\underline{\mathbf{r}}' + G[n]$$
 (1)

where $n(\underline{r})$ is the density and G[n] is a universal functional of the density. This expression, furthermore, is a minimum for the correct density function $n(\underline{r})$. In this note we propose an approximation for G[n], which leads to a scheme analogous to Hartree's method but contains the major part of the effects of exchange and correlation.

We first write

$$G[n] \equiv T_{S}[n] + E_{XC}[n]$$
 (2)

where $T_{\rm g}[n]$ is the kinetic energy of a system of non-interacting electrons with density $n(\underline{r})^2$ and $E_{\rm xc}[n]$ is, by our definition, the exchange and correlation energy of an interacting system with density $n(\underline{r})$. For an arbitrary $n(\underline{r})$ one can of course give no simple exact expression for $E_{\rm xc}[n]$. However, if $n(\underline{r})$ is sufficiently slowly varying, we can show that

$$E_{xc}[n] = \int n(\underline{r}) \epsilon_{xc}(n(\underline{r})) d\underline{r}$$
(3)

1

^{*} Supported in part by the Office of Naval Research.

where $\epsilon_{\rm xc}(n)$ is the exchange and correlation energy per electron of a uniform electron gas of density n. We propose (3) as our approximation even when $n(\underline{r})$ is not slowly varying and shall regard $\epsilon_{\rm xc}$ as known from theories of the homogeneous electron gas. $\frac{3}{2}$

From the stationary property of (1) we now obtain, subject to the condition

$$\int \delta n(\mathbf{r}) d\mathbf{r} = 0 , \qquad (4)$$

the equation

$$\int \delta n(\underline{x}) \left\{ \varphi(\underline{r}) + \frac{\delta T_{s}[n]}{\delta n(\underline{r})} + \mu_{xc} \left(n(\underline{r}) \right) \right\} d\underline{r} = 0 ; \qquad (5)$$

here

$$\varphi(\underline{r}) = v(\underline{r}) + \int \frac{n(\underline{r}')}{|\underline{r} - \underline{r}'|} d\underline{r}'$$
(6)

and

$$\mu_{xc}(n) = \frac{d}{dn} \left(n \epsilon_{xc}(n) \right) \tag{7}$$

is the exchange and correlation contribution to the chemical potential of a uniform gas of density n.

Eqs. (4) and (5) are precisely the same as one obtains from the theory of ref. 1 when applied to a system of non-interacting electrons, moving in the given potential $\varphi(\underline{r}) + \mu_{XC} \left(n(\underline{r}) \right)$. Therefore, for given φ and μ , one obtains the $n(\underline{r})$ which satisfies these equations simply by solving the one-particle Schroedinger equation

$$\left\{ -7^2 + \left[\varphi(\underline{r}) + \mu_{xc} \left(n(\underline{r}) \right) \right] \right\} \psi_{\dot{\mathbf{1}}}(\underline{r}) = \epsilon_{\dot{\mathbf{1}}} \psi_{\dot{\mathbf{1}}}(\underline{r})$$
 (8)

ind setting

$$n(\underline{r}) = \sum_{i=1}^{N} |\psi_i(\underline{r})|^2, \qquad (9)$$

where N is the number of electrons.

Eqs. (6) - (9) have to be solved self-consistently: One begins with an assumed $n(\underline{r})$, constructs $\varphi(\underline{r})$ from (6) and μ_{xc} from (7), and Finds a new $n(\underline{r})$ from (8) and (9). The energy is given by

$$E = \sum_{i=1}^{N} \epsilon_{i} - \frac{1}{2} \iint \frac{n(\underline{r}) \ n(\underline{r}')}{|\underline{r} - \underline{r}'|} \ d\underline{r} \ d\underline{r}' + \int n(\underline{r}) \left[\epsilon_{xc} \left(n(\underline{r}) \right) - \mu_{xc} \left(n(\underline{r}) \right) \right] d\underline{r}.$$
(10)

It is physically very satisfactory that $\mu_{\rm xc}$ appears in Eq. (8) as an additional effective potential so that differences of $\mu_{\rm xc}$ lead to pressures on the electron fluid in a manner familiar from thermo-dynamics.

The results of this procedure are exact in the following limiting cases: (1) when $n(\underline{r})$ is slowly varying, (2) when ϕ dominates over $\mu_{\underline{x}\underline{c}}$ (as near an atomic nucleus), and (3) when n is very large.

The method differs from Slater's method of the "exchange hole" in two ways: (1) Slater's method does not include correlation effects, 5 and (2) more importantly, the Slater effective exchange potential is 3/2 cr $\mu_{\rm X}$, the exchange part of the correction potential $\mu_{\rm XC}$ in our method. One can verify by a study of the slowly varying case that our result is correct.

It is also possible to obtain a scheme which includes exchange effects exactly, by writing in place of Eq. (3)

 $\mathbb{E}_{\mathbf{x}:} \left[\mathbf{n} \right] = \mathbb{E}_{\mathbf{x}} \left[\mathbf{n} \right] + \int d\mathbf{x} \, \mathbf{n}(\mathbf{x}) \, \mathbf{s}_{\mathbf{c}} \, \left(\mathbf{n}(\mathbf{x}) \right)$ (11)

where $E_{\mathbf{x}}[n]$ is the exchange energy in a Hartree-Fock system with density $n(\mathbf{r})$. This leads in place of (8) to a Hartree-Fock type equation.

The same approach, when appropriately extended, also gives simple results for a number of other electronic properties. Among the solid state applications are cohesive energies, elastic constants, Fermi surfaces, electronic specific heat, and energy bands. Details will be given in a future publication.

References:

- 1. P. Hohenberg and W. Kohn, Fays. Rev. <u>136</u>, B864 (1964).
- 2. For such a system it follows from ref. 1 that the kinetic energy is in fact a unique functional of the density.
- 3. See for example, E. P. Wigner, Phys. Rev. <u>46</u>, 1002 (1934); Trans.
 Faraday Soc., <u>34</u>, 678 (1938); J. Hubbard, Proc. Roy. Soc. A <u>243</u>,
 336 (1958); P. Noziéres and D. Pines, Phys. Rev. <u>111</u>, 442 (1958);
 T. Gaskell, Proc. Phys. Soc. (London) <u>77</u>, 1182 (1961); 80, 1091 (1962).
- 4. J. C. Slater, Phys. Rev. 81, 385 (1951).
- 5. Subsequent to the original paper by Slater, there have been several attempts to add correlation corrections: S. Olszewski, Phys. Rev. 121, 42 (1961); J. E. Robinson, F. Bassani, B. S. Knox and J. R. ichrieffer, Phys. Rev. Letters 9, 215 (1962); S. Lundqvist, Phys. Rev. to be published.